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Producing and controlling nonclassical light states are now the subject of intense experimental efforts. In this
paper we consider the interaction of such a light state with a small molecule. Specifically, we develop the
theory and apply it numerically to calculate in detail how a short pulse of nonclassical light, such as the high
intensity Fock state, induces photodissociation in H2

+. We compare the kinetic energy distributions and
photodissociation yields with the analogous results of quasi-classical light, namely a coherent state. We find
that Fock-state light decreases the overall probability of dissociation for low vibrational states of H2

+ as well
as the location of peaks and line shapes in the kinetic energy distribution of the nuclei.

I. Introduction

The interaction of strong short laser pulses with molecular
systems is a field of considerable activity, with applications in
atomic physics,1 molecular physics,2 laser cooling,3 laser tech-
nology,4 coherent control5 and basic quantum mechanics.
Among the many types of laser-molecule interaction, molecular
interaction with intense (>100 TW/cm2), ultrashort pulses have
been drawing prolonged interest over the years.6 Exposure of
molecules to strong fields is invariably associated with a delicate
interplay of electronic and nuclear dynamics. Thus the under-
standing of fundamental dynamics induced in small molecules
by light has been the focus of numerous experimental7 and
theoretical studies.8,9

A classical electromagnetic field can be closely approached
by the quantum coherent photon state, which is a specific linear
combination of Fock states |N〉 (where N is the number of
photons) having the minimal allowed uncertainty ∆N∆φ ) p/2
(where φ is the photon phase).10 As we show in the next section,
the special constant phase difference relations between succes-
sive Fock states in the coherent state of light enables the
combined molecule-photon wave function to be rigorously
written as a product between the molecular state and the coherent
light state and entanglement between the two is rigorously
avoided. This shows that the standard “semiclassical” treatment
is rigorously applicable as a quantum solution and the photons
affect the molecule only through the expectation value of the
electric field Eb. This forms the basis for almost all published
treatments of strong laser-molecule interactions originating in
the mid 70s and early 80s.11,12

However, this “semiclassical” approach is accurate only for
ideal coherent states of light with the perfect specialized phase

relations mentioned above. The effect of deviations from
coherency on molecular dynamics has not been, to our
knowledge, considered in a detailed theoretical way. Although
such distortions can arise due to cavity imperfections, laser
threshold effects, or aberrations of the laser beam as it is released
from the cavity, they can also be produced in a controlled way.13

Furthermore, experimental techniques are close to the stage
where specialized quantum states of light can be readily
produced13,14 with high intensities and ultrafast switching
capabilities. It is therefore interesting to study theoretically the
effects such fields can have on molecules and compare them
with the standard coherent-state results.

It is the purpose of this paper to study in detail the
photodissociation of H2

+ following interaction with a nonclas-
sical light source. We select to work with a Fock state |N〉 having
exactly N photons of frequency ω. The Fock state is as different
as can be from a classical electromagnetic field because the
phase uncertainty is formally infinite. In section II we present
our general formalism for strong laser fields with a prescribed
quantum photon state. We then discuss coherent states showing
they lead to the usual semiclassical equations. We develop a
Born-Oppenheimer (BO) framework suitable for applying the
formalism to study dynamical molecular processes under various
conditions. Various methods for solving equations of this or
similar type exist15 and here we use a method which we describe
in detail in section III. Using this framework we investigate
the photodissociation of H2

+ under a high N Fock state
comparing it with the results of a coherent-state calculation.
The results are reported in section IV and the conclusions are
summarized and discussed in section V.

II. Theory

A. Basics. In the long wave limit the electric field operator
of a cavity of volume Ω and a laser mode of frequency ω is10

Ê ) iE0(â - â†) (1)

where E0 ) (pω/2ε0Ω)1/2, where p is Planck’s constant and ε0

is the permittivity of the vacuum. We will be interested in
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photonic states with an average large number of photons Nj .
We write the free-field Hamiltonian of a single mode of
frequency ω as

ĤR ) (â†â + Nj + 1
2)pω ) (n̂ + Nj + 1

2)pω (2)

A general photonic state is a linear combination of the N-photon
states |n〉, where n ) N - Nj and

â†|n〉 ) √Nj + n + 1|n + 1〉

â|n〉 ) √Nj + n|n - 1〉
n̂|n〉 ) (Nj + n)|n〉

(3)

and obviously, 〈n|n′〉 ) δnn′. Any photonic state is a linear
combination of Fock states:

Ψphot ) ∑
n

γn|n〉 (4)

The summation includes all possible n’s:

n ) -Nj , ..., ∞ (5)

Now we couple the photons with a collection of M particles of
charge qm and 3D vectors rm, m ) 1,..., M. The molecular field-
free Hamiltonian is denoted ĤM, and we will discuss its exact
form later. Obviously, it operates only on the particle coordi-
nates. If we assume linear polarization along the x axis, the
combined particle-laser Hamiltonian is10

Ĥ ) ĤM + ĤR + Êµ̂ (6)

where µ̂ is the x-component of the total dipole moment of the
particles:

µ̂ ) ∑
m)1

M

qmx̂m (7)

On the basis of eq 4, we take the total wave function as

Ψ(t) ) ∑
n

Φn(r,t)|n〉 (8)

where r ≡ (r1, ..., rM). The values of the coefficients Φn(r,t)0)
define the initial state of the system. For example, when the
system is initially in the molecular state Φini(r) and the laser is
in a state given by eq 4, then

Ψ(t)0) ) Φini(r) ∑
n

γn|n〉 (9)

So in this case

Φn(r,t)0) ) Φini(r)γn (10)

We intend to consider this initial condition in more detail later.
Let us define

Fnn'(t) ) ∫Φn*(r,t) Φn'(r,t) d3Mr (11)

Normalization of Ψ demands

∑
n

Fnn(t) ) 1 (12)

The expectation value of the number of photons is

〈N̂〉t ) Nj + ∑
n

Fnn(t)n (13)

The expectation value of the electric field is

〈Ê〉t ) iE0 ∑
nn'

Fnn'〈n|(â - â†)|n'〉

≈ i
1
2

E ∑
nn'

(Fnn'-1 - Fnn'+1)
(14)

where we define E as

1
2

E ) E0√Nj ) � pωNj
2ε0Ω

(15)

Note that E as defined has the dimensions of an electric field,
but it is not in itself necessarily equal to the expectation Value
of the electric field (eq 14). In fact, in a perfect Fock state |n〉
the expectation value of the electric field is zero although the
photonic state includes many (i.e., n + Nj ) photons. The
definition in eq 15 is perfectly in accord with the standard
definition of quantum electric-field energy-density10 (ε0/2)E2 as
the volume-density of the photonic-energy pωNj /Ω. Note that
the effective electric field E can be strengthened either by
increasing Nj or by decreasing the cavity volume Ω. E is the
on/off control and is a function of time having an experimentally
adjustable form. In this work we impose the following form
for E(t):

E(t) ) {E0 sin2( π
τp

t) t ∈ [0, τp]

0 otherwise
(16)

where E0 is the amplitude and τp the pulse duration. The
Schrodinger equation for the combined molecule-light state is

ip
∂

∂t
Ψ(t) ) ĤΨ(t) (17)

This can be projected onto the Fock state 〈n|, yielding equations
for the unknown coefficients Φn(r,t):

ip
∂

∂t
Φn(r,t) ) (ĤM + npω) Φn(r,t) +

i
2

E(t) µ̂(Φn-1(r,t) - Φn+1(r,t)) (18)

Equation 18 is a very general explicitly time-dependent equation
of motion for the total photon-particle combined state. Because
we have chosen the Fock states as a basis the equation pertains
only to the coefficients Φn(r,t). These coefficients however offer
full information concerning both the molecule and the photonic
state coupled to it.

B. Application to Molecules Using a Born-Oppenheimer
Approach. We simplify eq 18 for molecules using the
Born-Oppenheimer approach. The particles of the system are
separated to electrons and nuclei, writing r ) (s,R), where s
are the coordinates (including spin) of the electrons and R are
those of the nuclei. The material Hamiltonian is written as

ĤM ) T̂N + Ĥe(R) (19)

where T̂N is the kinetic energy of the nuclei and Ĥe(R)is the
so-called electronic Hamiltonian, which depends parametrically
on the nuclear position, including the kinetic energy of the
electrons and all the potential energies of the Coulomb interac-
tion between the charged particles of the molecule. The adiabatic
states �j(s;R) are eigenstates of the electronic Hamiltonian, with
eigenvalues uj(R):

Ĥ(R) �j(s;R) ) uj(R) �j(s;R)
〈�j|�j'〉 ) δjj' j' ) 1, 2, ...
u1(R) e u2(R), ...

(20)

We now expand the coefficient functions Φn(r,t) of eq 8 as linear
combinations of the electronic adiabatic states, leading to new
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time-dependent coefficient functions ψnj(R,t) that depend on the
photon index n, the electron level index j, and explicitly on the
nuclear degrees of freedom:

Φn(s,R,t) ) ∑
j

�j(s;R) ψnj(R,t) (21)

Plugging eq 21 into the general eq 18 and projecting onto state
�j by integration on the electronic coordinates, we obtain, after
neglect of nonadiabatic couplings:

ip
∂

∂t
ψnj(R,t) ) (T̂N + uj(R) + npω) ψnj(R,t) +

(Vjj'(R,t) ψn-1,j'(R,t) + Vjj'*(R,t) ψn+1,j'(R,t)) (22)

Here, a summation over the repeated index j′ is implied
(Einstein’s convention) and Vjj′ ) iE(t) µ̂jj′(R) where

µjj'(R) ) ∫ �j(R,s)† µ̂e(R,s) �j'(R,s) d3s + δjj'µN(R)

(23)

are the total dipole moment electronic matrix elements, with µ̂e

and µ̂N the electronic and nuclear dipole moment operators.
C. Coherent Photonic State and the “Semiclassical”

Solution. As explained above, the dynamics of the combined
molecular-photon system depends on the equation of motion,
eq 18 and the initial state of both the photons (eq 4) and
molecule Φini(r) (eq 9). If our system starts from the coherent
photonic state |R〉, then the coefficients for eq 10 are

γn ) e-1/2|R|2 RNj+n

√(Nj + n)!
R ) √Njeiθ (24)

where θ is a constant phase that characterizes the coherent state
and will be will be discussed later. Note that due to normaliza-
tion and because ∑n|γn|2 ) 1 for eq 24, we must have also

∫ |Φini(r)|2 d3Mr ) 1 (25)

Next we apply the approximation Nj + n ≈ Nj (which is valid
for Nj . n) so that a phase relation between two successive
coefficients of the Fock states is formed in the coherent state:

γn+1 ≈ eiθγn (26)

As will be shown next, this phase relation is crucial for deriving
the semiclassical expression. The solution of eq 18 fulfilling
the initial conditions eqs 9 and 24 can be written as

Φn(r,t) ) γ0e
in(θ-ωt)Φ(r,t) (27)

where Φ(r,t)0) ) Φini(r) and the equation for Φ(r,t) for t > 0
is obtained by plugging eq 27 into eq 18. Following a few simple
manipulations and division by ein(θ-ωt), we find that Φ(r,t) is a
solution of the equation

ip
∂

∂t
Φ(r,t) ) [ĤM + E(t)µ̂ sin(ωt - θ)]Φ(r,t) (28)

This equation is recognized as the “semiclassical equation of
motion”, where the molecular system interacts with a classical
electromagnetic field having an envelope E(t) and a time-
sinusoidal oscillatory part at the photon frequency ω.

We find that when the laser-molecule initial state is given
by eq 9 and γn are given by eq 24, i.e., when we have an EM
field initially in a coherent state, the solution of eq 28 is exactly
equivalent to the solution of the full quantum equation eq 18.

The structure of the exact wave function in this case, namely,
eq 27 shows that the light-matter wave function is a product

function at all times (and not only at time t ) 0). Thus the two
entities stay separate in this special case and no correlation or
entanglement between them develops. This is different than the
general case (eq 21).

Equation 28 can be applied to molecular systems using the
Born-Oppenheimer approach.12,16 Indeed, in this case, the
semiclassical wave function is written as

Φ(s,R,t) ) ∑
j

�j(s;R) ψ̃j(R,t) (29)

Comparing with eq 21, we see similarity, but there is no
dependence on the photonic state, because Φ includes implicitly
all possible photon absorption processes. After plugging eq 29
into eq 28, neglecting nonadiabatic couplings, we obtain the
standard semiclassical-Born-Oppenheimer equations:

ip
∂

∂t
ψ̃j(R,t) ) [T̂N + uj(R) + Vjj'(t) sin(ωt - θ)]ψ̃j(r,t)

(30)

III. Application: Photodissociation of H2
+

In this section we discuss application of the formalism to
the photodissociation of H2

+, where the products are a proton
(p) and a ground-state hydrogen atom. The photodissociation
process is caused by a strong 100 TW/cm2 pulse of wavelength
600 nm with envelop given in eq 16 and pulse duration τp )
40 fs. We assume alignment of the H2

+ molecular axis with
the direction of light polarization and treat dynamically only
the internuclear distance R. As we are interested with photo-
products in their ground states, we limit our study to the two
basic adiabatic potential curves u0(R) and u1(R) corresponding
to the bonding 1σg and antibonding 1σu states shown as full
line curves in Figure 1. We have also performed a few pilot
runs referring to additional four excited states of H2

+, We found
that the presence of these states did not significantly affect the
results. In addition, the ionization rate for this pulse is not high
and this justifies neglecting this effect in first approximation.17

The adiabatic surfaces and transition dipole moments µ01for
this calculation were obtained from ab initio calculations
employing the 6-311++G(3df,3pd) basis set using the Hartree-
Fock option of MOLPRO18 (this is a 1-electron system so
correlation is unnecessary). The calculated potentials compare
well with the analytical results of ref 19. They are depicted in
Figure 1. At large internuclear distance R the two curves

Figure 1. Ground u0(R) and the excited u1(R) adiabatic potentials (full
lines). First potentials on the diagonal of the potentials matrix W(R) of
eq 33 formed from photon-displaced adiabatic potentials u0 and u1

(dashed lines).
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coalesce as they both describe a proton and H atom in its ground
state. The H2

+ is assumed to be initially in the Vth (V ) 0, 1,
2, ...) vibrational eigenstate of u0(R). The energy difference
u1(R0) - u0(R0), where R0 is the minimum of u0(R), is much
larger than the photon energy (pω ∼ 2.1 eV) so photodisso-
ciation via transitions into the dissociative surface is efficient
only for intense pulses.

A. Simplifications of the Equations. The first simplifying
assumption is to neglect the possibility of emitting photons to
positive n states. This assumption is correct for V e 11 because
the vibrational excitation energy is then smaller than the photon
energy. This assumption is similar to Rabi’s rotating waVe
approximation, neglecting antiresonant terms in the solution,
known to be widely applicable.

The coupling matrix Vjj′ has only nondiagonal elements. The
state ψ00 will thus couple only to ψ-1,1. Similarly, ψ-11 will
couple to ψ00 and to ψ-20. Further consideration shows that ψ-20

couples to ψ-11 and to ψ-31. The emerging pattern is ψ-n,j couple
to ψ-n′j′ only if j - n and j′ - n′ are both even or both odd.
Thus, there are two uncoupled manifolds. Because our initial
condition is the state ψ00 the “odd” manifold is never occupied
and can be discarded. Under these conditions it is only necessary
to consider the following equation:

ip
∂

∂t
Θ(R,t) ) T̂Θ(R,t) + W(R,t) Θ(R,t) (31)

where Θ is the “even” column vector given by

Θ ) (ψ0,0 ψ-1,1 ψ-2,0 ψ-3,1 · · · )T (32)

and Wjj′(R,t) is given by

W ) (u0 V01

V10* u1 - pω V01

V10* u0 - 2pω V01

V10* u1 - 3pω V01

V10* . · · . · · .
· · . · · .

)
(33)

This greatly simplifies the treatment of the equations. Note the
interesting structure of the equations: for the system to be in
the σg electronic state (u0 potential) it must have absorbed an
even (including zero) number of photons whereas for it to be
in the σu electronic state (u1) it must have absorbed an odd
number of them.

The initial state at time t ) 0 is the V vibrational eigenstate-
state �V(R) on the ground potential u0 of H2

+:

[- p2

2M
d2

dR2
+ u0(R)]�V ) εV�V (34)

where M is the reduced nuclear mass equal to half a mass unit.
Thus the initial state is described by the coefficient spinor:

Θ(R,t)0) ) (0, 0, ..., �V(R), 0, 0, ...)T (35)

To evolve the wave function using eq 31, we define vector-
wave function Λ(R,t) by

Θ(R,t) ) Λ(R,t) + Θ(R,0)e-iεVt / p (36)

where Θ(R,t) is the desired solution of eq 31. The response
Λ(R,t) can be shown to obey the equation

ip
∂

∂t
Λ(R,t) ) T̂Λ(R,t) + W(R,t) Λ(R,t) + Θ̃(R,t) (37)

with

Θ̃(R,t) ) (0 V10* (R,t) �V(R)e-iεVt/p 0 0 · · · )T (38)

Equation 37 is evolved with Λ ) 0 taken at t ) 0. For the
numerical calculation, we use a grid consisting of 2048 points
spanning the range 0.3 < R/Å < 12. At the asymptote an
absorbing potential is placed, guaranteeing efficient absorption
of the photodissociated amplitude before reflection off the grid
boundaries.20 We included in all calculations 6 photonic states
(i.e., there were 12 electro-photon states altogether). The
propagation of the vector wave equation uses the fast Fourier
(FFT)21 and the Lanczos short-time iteration techniques.22

B. Adiabatic Electro-Photonic Potentials. One basic ques-
tion is the number of photon states that have to be included in
the calculation. It is evident from the explicit form of the matrix
W in eq 33 that as its dimension Ñ increases the high (j, j)
diagonal terms Wj,j become dominated by -jpω whereas the
off diagonal terms are independent of j but are proportional to
the amplitude of the electric field envelope E0. For the coupling
to be ineffective the diagonal term must become much larger
than the coupling:

Ñpω . E0µ01 (39)

In the present calculation we assume a field-intensity of E0 )
0.053 au, corresponding to a pulse maximal intensity of 100
TW/cm2. The transition dipole moment is of the order of 1a0e
and for a photon of 2.1 eV we obtain that the number Nj must
be much larger than 1. We demonstrate this by comparing the
eigenvalues of the matrix W(R,t), here called “adiabatic electro-
photonic” or “dressed” potentials23 at the peak electric field in
Figure 2. The eigenvalues for Ñ ) 2, 4, and 6 are shown. It is
clear that the first (highest) two eigenstates are converged

Figure 2. Eigenvalues of the matrix W, the so-called “electro-photonic”
adiabatic potentials of eq 33, as a function of internuclear distance, for
three matrix dimensions Ñ ) 2 (a), 4 (b), and 6 (c). Notice that the top
two potentials are well converged already at Ñ ) 4.
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already at Ñ ) 4. This shows that adding photons much beyond
this value will minimally affect the results. This is confirmed
by the dynamical calculations.

C. Kinetic Energy Distribution. For a given initial vibra-
tional state φVi

(R) the probability for dissociation on the (nj)
electro-photonic is equal to the integrated flux outward of the
association region. For convenience a certain asymptotic point
Ra can be assigned, just before the absorbing potential starts,

not too far from this region but far enough so that flux hardly
ever comes back once passing it, and all time-dependent
probabilities can be computed with reference to this point. The
total dissociation probability from an initial state Vi up to time
t is then the some over all states:

P(t|Vi) )∑
nj

Pnj(t|Vi)

)∑
nj

∫0

t
〈ψnj(t′|Vi)| ĵ(Ra) |ψnj(t′|Vi)〉 dt′

(40)

where the ψnj(t|Vi) are the wave functions propagated by eq 31
with the initial state φVi

(R) of eq 35 and

ĵ(Ra) ) (2M)-1[δ(R̂ - Ra)p̂ + p̂δ(R̂ - Ra)] (41)

is the flux operator, where M is the reduced mass. To calculate
the distribution of kinetic energy, we need to extract it from

TABLE 1: Photodissociation Probabilities for Three Initial
Vibrational States

initial light state

initial molecular state Fock coherent

V)2 0.12 0.20
V)3 0.31 0.67
V)6 0.95 0.94

Figure 3. Kinetic energy distribution of H2
+ as it photodissociates after exposure to a 40 fs pulse of Fock (continuous line) and coherent (dotted

line) state light, at 600 nm and 100 TW/cm. Data are given for initial vibrational states V ) 2, 3, 6. The left panel shows the low kinetic energy
distribution, and the right panel shows higher energies. The arrows indicate the “ideal” quantized kinetic energies as determined by eq 45. For the
V ) 6 results we included the calculated photodissociation spectra of ref 17 (dashed line).
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the asymptotic wave packet. We use the wavepacket itself as
follows. At a any asymptotic point R > Ra, the potentials are
assumed flat and decoupled. At this point then the wavepacket
obeying the Schrodinger equation is a sum of plane waves with
well-defined momentum and energy:

ψnj(R,t) ) ∫-∞

∞
Anj(k)eikRe-i[(p2k2/2M)+uj-npω]t/p dk R > Ra

(42)

The absolute square of the amplitude |Anj(k)|2 is proportional to
the momentum distribution. From these considerations we
determine the kinetic energy distribution as

Knj(Ek|Vi,nj) ) � 2Ek

h2M
× |∫0

∞
ψnj(Ra,t'|Vi)e

i(Ek-npω)t' / p dt'|2
(43)

where the prefactor is the normalization constant, ensuring that
the integral of Knj over all values of the kinetic energy is equal
to the total photodissociation probability:

Pnj(tf∞|Vi) ) ∫0

∞
Knj(Ek|Vi,nj) dEk (44)

IV. Results for Photodissociation of H2
+

In the specific calculation made here we used Ra ) 6 Å and
then repeated the calculation with Ra ) 12 Å. The kinetic energy
distribution up to 3 eV was almost unaffected by the two
choices. For higher kinetic energies we found significant
discrepancies. A component with kinetic energy Ek arrives at
the asymptote Ra within time Ra(2Ek/M)-1/2. The kinetic energy
measurement at Ra (i.e., eq 43) is only valid if the coupling
between the surfaces is already zero by then. Thus, we estimate
Ra > τp(2Ek/M)1/2 for the kinetic energy distribution at Ek to be
valid. In practice we notice that this happens even sooner
(probably even if Ra is smaller by a factor 2 this still holds)
and we conclude that measuring kinetic energy distributions up
to 5 eV with Ra ) 12 Å gives reasonably converged results.

In Table 1 we show the calculated photodissociation prob-
abilities for the Fock and coherent states from initial vibrational
states of the molecule. For the low vibrational states the Fock
state is twice as efficient in dissociating the molecule whereas
for the V ) 6 eigenstate the two field states give similar
probabilities.

More information can be obtained by looking at the kinetic
energy distributions given in Figure 3. The initial state is an
eigenstate of the unperturbed Hamiltonian so the kinetic energy
distribution is expected to reflect energy conservation rules:

Ekin(n,V) ) pωn + [u0(R0) + EV] - u0(∞) (45)

where the quantum number n indicates the number of photons
absorbed and EV is the vibrational energy of the initial vibrational
state. Equation 45 holds for an infinite pulse. In our calculations
the pulse is turned on and off within 40 fs. This switching leads
to deviations from eq 45: the kinetic energy distribution is
smeared and may shift. We denote by arrows in Figure 3 the
kinetic energies derived from eq 45. Rather large deviations
are observed. In all cases but one (the low kinetic energy arrow
for V ) 3) the peaks are shifted to lower kinetic energies by a
few tenths of an electronvolt. For the V ) 6 case we also show
results published in reference 17. We do not expect full
agreement to our results (coherent or Fock) because we measure
the kinetic energy distribution when the H atom is in its ground
electronic state whereas in ref 17 the dissociated H atom is in
any bound electronic state. Despite this, the yields at the energy

range shown are not much different. For kinetic energies above
3 eV the yield of photoproducts in our calculation drops sharply.
This happened even though we included in our treatment 6
photon states; i.e., we allowed the system to absorb up to 6
photons. The results in ref 17 do not decrease at higher energies.

V. Summary and Discussion

The purpose of this Article is to investigate the sensitivity of
light-induced photodissociation of H2

+ to the particular quantum
nature of the light field. This issue is of practical interest in
view of the rapid developments of new advanced light sources
with precise quantum-state control. Our results can also be useful
as a stability analysis: how much can Fock perturbations of the
coherent state13 affect the photodissociation dynamics? We have
developed a computational framework that can be used to
answer such questions in a controlled and accurate manner.
Although our equations bare resemblance to a Floquet approach
to the coherent state, the main difference is in the way these
equations are applied, i.e., using an initial state at time t ) 0
and a time-dependent envelop. Floquet analysis is strictly true
for stationary-periodic applications. To apply it for finite pulses,
specialized techniques are required.9 These are not needed in
the present application, because we are not trying to solve the
coherent-state-induced dynamics but a different problem: the
Fock-state-induced dynamics.

Our results show that photodissociation probabilities espe-
cially of the low vibrational states of H2

+ change significantly
(by a factor of 2 or more) whereas the kinetic energy peaks
shift and line shapes are different. These findings are significant
for attempting to produce quantitative benchmark quality
description of the most basic photodissociation, that of H2

+.
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